Roll No.

Total No. of Pages: 03

Total No. of Questions: 09

B.Tech. (Electronics & Communication Engg.) (Sem-5)

CONTROL SYSTEMS

Subject Code: BTEC-504-18

M.Code: 78300

Date of Examination: 06-06-2023

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) Discuss the importance of transfer function.
- b) What do you mean by system response? Explain.
- c) What do you meanly transient accuracy? Discuss.
- d) Define time constant. Discuss its importance.
- e) What do you mean by feed forward control? Discuss.
- f) Discuss the concept of stability in brief.
- g) Explain the importance of tuning of a controller.
- h) List the important characteristics of Non-linear system.
- i) What are the advantages of state variable analysis? Explain.
- j) What do you mean by state model? Discuss.

1 M-78300 (S2)-2170

SECTION-B

2. Determine the gain of the Signal Flow Graph shown in fig.

3. For a unity feedback control system the forward path transfer function is given by

$$G(s) H(s) = \frac{2(s^2 + 3s + 20)}{s(s+2)(s^2 + 4s + 10)}$$

Determine the steady state error coefficients of the system. When the inputs are a) 5 b) 4t c) $4t^{2+}/2$.

4. Find the stability of a closed loop control system having characteristics equation

$$s^6 + s^5 + 5s^3 + 3s^3 + 2s^2 - 4s - 8 = 0$$

5.

Find the stability of a closed loop control system having charges
$$s^6 + s^5 + 5s^3 + 3s^3 + 2s^2 - 4s - 8 = 0$$

Test the controllability of the system given below:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$$

6. Explain (in detail) the principle and working of synchro transmitter and receiver used in control systems.

SECTION-C

The block diagram of a unity feedback control system is shown in fig. 7.

2 | M-78300 (S2)-2170 Determine the characteristic equation of the system $\omega_n, \zeta_n, \omega_d, t_p, M_p$ the time at which the first undershoot occurs and the time period of the oscillations.

Sketch the Bode plot for the transfer function G(s) $H(s) = \frac{2(s+0.25)}{s^2(s+1)(s+0.5)}$. 8.

Determine the gain and phase margin, is the system stable.

- 9. Discuss
 - a) Pneumatic Actuators
 - b) Optimal control

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 | M-78300 (S2)-2170